
Theory of nematic backbone polymer phases and conformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 2215

(http://iopscience.iop.org/0305-4470/19/11/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 2215-2227. Printed in Great Britain 

Theory of nematic backbone polymer phases and conformations 

X J Wangt and M Wamer 
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK 

Received 8 October 1985 

Abstract. The nematic-isotropic phase transition of long flexible polymers using mean-field 
theory with the Maier-Saupe expression of the van der Waals interaction are described. 
The order parameter of nematic polymers is calculated as a function of reduced temperature, 
kBT/( a&) ' / ' ,  where a is the quadrupolar mean-field strength per unit length of the molecules 
and E is the bend elasticity of the polymers. The reduction factor is in contrast to 
the factor in the Maier-Saupe theory of conventional nematics, a, indicating via E the 
polymer aspect to the problem. 

The transition temperature, critical-order parameter and latent heat are given. For very 
long chains the transition between the nematic and isotropic phases occurs when T =  
0.387 75 (aE)'/*/kB where the order parameter is equal to 0.356 42. We predict the tem- 
perature dependence of the order parameter and transition behaviour for different lengths 
of the polymer chain. 

A detailed procedure is suggested for comparison with experiment involving order 
parameters, latent entropy and configurational properties as revealed by small-angle neutron 
and x-ray scattering. 

1. Introduction 

At present there is much interest in polymer liquid crystals (for reviews see Ciferri et 
a1 (1982), Blumstein (1985) and Chapoy (1985)). Among the questions addressed, 
especially among the emergent theories of such polymers, are those of the nature of 
the nematic-isotropic transition and the character of the order and molecular configur- 
ation in the nematic phase. ten Bosch et a1 (1983a, b, c) employ as a model the 
worm-like chain. The same model and similar techniques were used by Warner et al 
(1985). Ronca and Yoon (1982) took a model for their chains which was only globally 
inextensible. de Gennes (1984) had addressed the problem arising if the chain interacts 
with its surroundings as an elastic continuum. Odijk (1985) has taken a scaling approach 
to chain configurations and obtains a second characteristic length, longer than the 
effective step of the worm, as a result of the nematic field. A closely related problem 
is that of molecular behaviour in lipid membranes (Jahnig 1979, 1981). 

Many polymers can exist in two different liquid phases-ordered (nematic) or 
disordered (isotropic)-with a transition between them induced by changing tem- 
perature. The nematic phase shows long range orientational order. Previous work 
(Warner er al 1985, hereafter referred to as WGB) pursued a worm-like chain model 
and mapped it onto a quantum problem that allowed a description of chain configur- 
ations. This paper will develop mean-field theory with the Maier-Saupe (MS) 
expression for interactions of the quadrupolar type, to describe the dependence of the 
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order parameter on temperature, and to relate the bend elasticity and the quadrupolar 
mean field to the transition of thermotropic polymers. Thus within the spirit of MS, 
steric (shape-dependent) forces between molecules are neglected. 

We shall accordingly review conventional MS theory, the model of worm polymers, 
WGB and the self-consistency requirements on the polymer order parameter. As we 
are interested in transitions we will evaluate the free energy of the nematic and isotropic 
phases. Our results show the phase behaviour and order of chains as functions of 
their length and temperature, Results for the latent entropy complete our description 
of the phase transition. 

2. A MaierSaupe theory of polymers 

According to the Maier-Saupe theory (Maier and Saupe 1959,1960) of small molecule 
liquid crystals, the interaction mean field is orientation dependent, i.e. 

V =  -aS($cos2 e - $ )  (1) 
a being the strength of the quadrupolar mean field and varying from one substance 
to another, and S the order parameter, defined as the average ( ) below 

s = ($ cos2 e - ;) = ( P,(COS e)) (2) 
where 8 is the angle between the molecule long axis and the preferred axis, i.e. the 
director 6. Expression (1) considers only the soft, dispersion interaction taking no 
account of steric effects. 

The order parameter is calculated self-consistently since the distribution of orienta- 
tions required in (2) is just the Boltzmann factor deriving from ( 1 )  and itself involves 
S. 'Thus (2) becomes a self-consistency equation for S. When the temperature is higher 
than T* = 0.222 84 a /  kB then S = 0 is the only solution, representing isotropic fluid. 
Below T* two more non-zero solutions appear but it is not until a lower temperature 
T, = 0.220 19 a/kB that one of these, the nematic phase, has a free energy lower than 
that of the isotropic phase. There is a first-order transition but with a weak latent heat 
and the order parameter S jumps from zero to 0.4289 at the transition temperature T,. 
The MS theory describes semi-quantitatively the nematic-isotropic transition and 
explains the dependence of order parameter on the temperature and the pre-transition 
behaviours. WGB was concerned with asymptotic questions of chain conformation. 
Limiting estimates of T* were made when considering self-consistency. By considering 
the free energy, we shall find T, and the character of the transition. 

The model polymers are considered as long, worm-like, continuous elastic chains. 
Intramolecular and intermolecular interactions are represented solely by the bend 
elasticity, E ,  of the chain and-the anisotropic part of the attractive van der Waals force, 
a, respectively, neglecting all other interactions of the polymers. Monomers, subsumed 
into the worm model, would be small-molecule nematics. The tangent is equivalent 
to the molecule long axis of the small-weight liquid crystal. Obviously, different parts 
of the chain have different tangents, but the tangent can change continuously along 
the chain contour. What our model neglects is inhomogeneity in the chemical sequence 
of the chain. For long range universal properties of polymers such questions are not 
usually of any significance (de Gennes 1979). However, there is an alternation of 
properties of nematic polymers according to whether there is an even or odd number 
of elements comprising the spacer units between stiff elements of the backbone. This 
is equivalent to an anisotropy of the bend constant E employed here (Luckhurst 1985). 
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We suppose the mean energy per unit length of the chain again has the MS form 
(1) where a is now an energy per unit length, 0 is the angle between the tangent of 
the local chain and the preferred axis, e.g. z axis, and the order parameter is expressed 
by (2) taken along the chain 

S = ( IoL ds P2( cos e( s))) 
L 

(3) 

L being the total chain length and s the arc length along the chain from one end. 

of the total curvature along the chain and a bend elasticity E ,  i.e. 
Denoting the unit tangent vector by G(s), the total bending energy is given in terms 

We may now write the complete partition function for a polymer chain, including both 
the bending energy of the worm and the effect of the nematic mean field on the chain 
energy, by summing over all configurations Q(s),  where U, = cos 8, namely 

Various authors (see WGB) have recognised that the path integral is the same as that 
for diffusion over the surface of a sphere with a diffusion constant D =  1/(2P&) and 
a potential -aSP2(cos e). The integral with initial and final directions constrained to 
given values represents the total weight associated with the transition in ‘time’ s from 
the initial to the final condition. This is simply the propagator, G, for the diffusional 
process that the tangent vector undergoes and can be expressed (WGB) more conven- 
tionally as a diffusion equation, albeit of the Schrodinger type: 

[ a l a s  - DV$-pd(;  COS* 8 -i)]G(G, 2’; s - s r )  = 6(G, G ’ ) ~ ( s  - s ’ )  ( 6 )  

where V’; is written explicitly with the unit vector 6 to indicate that it is the angular 
part of the Laplace operator. The Green function G( 6, G’, s, s r )  is the propagator taking 
the tangent vector G along the chain from initial direction G’ at the point s’ to the final 
6 at the other point s. This is extensively discussed by WGB who show that the most 
interesting properties of nematic polymers arise from a non-perturbative solution of 
(6). In particular, transitions of the tangent vector between the poles of the unit sphere 
through the equatorial nematic potential are the hairpins first introduced by de Gennes 
(1982). Models not conserving chain length locally (Ronca and Yoon 1982) presumably 
have difficulty in describing such defects in chain conformation. de Gennes (1982) 
and WGB show that hairpins can have a profound effect on chain dimensions. 

Measuring s in units of D-’, the step length for the worm chain (4) without the 
nematic field, setting A’= -$Sap/ D = -3Sap’q assuming the s dependence e-Ans, and 
supposing azimuthal symmetry we get the standard form of the spheroidal wave 
equation of zero order of Meixner and Schafke (1954) (see Jahnig 1979) 

1 d  
sin 8 dB 

[ A, + - - (sin 02) + A2(1- cos2 e )  

with A, = A, -$A’. Denoting the eigensolutions of (7 )  by Sp,( e) ,  the spheroidal 
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wavefunctions of zero order, the Green function of ( 6 )  is 

(8) 
2 n + l  - s~,(z)s~,(z’)  e-AnL 

the weight of a chain configuration with initial and final directions z, z’ (with z = cos e). 
Having written an explicit expression for the propagator G, we can use it to evaluate 

the partition function, the contribution of the chain’s internal degrees of freedom to 
the total free energy of the system and then we can discuss the order parameter S and 
the nematic-isotropic transition of the polymers. 

Accordingly the partition function Z is obtained by summing G over z and z’, 
having removed the aximuthal variation and the 27r normalisation: 

G(z, z:; L )  = 
n=o 2 

dzdz’G(z,z’ ;L,O)= - 2 n + 1  (1 dzSp,(z))2exp(-A,L). (9) 
OD 

n = O  2 

For a free chain, i.e. in the isotropic liquid phase, A2 + 0, so Sp, + P,, the Legendre 
polynomials, and 2 = 2. 

In the nematic phase the order parameter is 

ds  f d z  dz‘dz’‘ G(z’, z; L, s)G(z, z”; s, 0)P2(z) 
’ 

= IoL dz dz’ dz” G (  z’, z; L, s)  G (  z, z”; s,O) 

The Sp, and A, appearing in Z and S depend on A2, and hence the nematic order S 
and T ;  therefore the resulting order parameter S must be made self-consistent. 

The eigenfunctions Sp, are expanded in terms of the P,, the Legendre polynomials, 
which is useful for the evaluation of matrix elements of Po, P,  and P2 necessary for 
the calculation of the order parameter and chain dimensions: 

where Z’ indicates that 2r starts at -n or - n + l  depending on n even or odd, 
respectively, i.e. Sp, depends only on P,,2, which has the same parity. 

Substituting (11) into equation (7) ,  we finally obtain a matrix equation with 
eigenvalues A, and eigenvectors an,2, which have been numerically obtained to high 
accuracy. For A2+ 0, A, takes the value n(n + l ) ,  but for A’+ --a3 the A, coalesce in 
pairs for consecutive n; the difference of A2 and A. becomes greater as /AI2 becomes 
larger. This is explained in WGB in terms of an analogy with quantum mechanical 
barrier penetration. 

2.1. Very long chains 

Substituting (8) into ( lo ) ,  only the Sp, with n even survive because they are composed 
of the even P,,. For chains very long with respect to D-’ only the lowest eigenstate 
contributes because of the exponentials and 

s = f dz[SPo(z)I2P2(z). 

Finally, we can obtain the expression for S using a0,2r as follows: 

W 3(2r - 1) 
4 r - 3  S =  ai,  2r  + (13 

This is a self-consistency equation since the a depend on A’, itself dependent on S. 
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The numerical results are depicted in figure 1. S = 0 is a solution at all temperatures. 
This is the disordered phase, i.e. isotropic liquid phase. For temperatures T below 
0.390 66 kB, two non-zero solutions to equation (13 )  appear. The upper branch 
tends to unity at absolute zero temperature and represents the nematic phase which 
means all the parts of the chains tend to align with a preferred axis, the director. The 
lower branch approaches - $  at absolute zero temperature, implying that in this phase 
all parts of the chains would attempt to line up perpendicular to the preferred direction 
without azimuthal order. It is easy to prove from the free energy that at low temperatures 
this phase and the disordered phase are unstable with respect to the parallel-aligned 
nematic phase. 

The free energy per chain for the mean-field problem follows from the partition 
function 2 as 

FN= - k ~ T l n ~ + ~ a S 2 ~ D - ’ = - k B T ( - h o ~ + l n 2 + 2 1 n  ao,0)+$US2LD-’. (14) 

The second term seems unusual, the reason for its appearance in the free energy being 
the mean-field replacement of pair interactions by temperature-dependent potentials 
of a single monomer. 

The free energy per chain of the isotropic phase of polymers is 

F,= -kBT h’l 2. (15 )  

The phase transition occurs when the free energies F N  and F, of the nematic and the 
isotropic phases are equal. Typically, U,,, is close to unity. For long chains, L-, CO, 

equating free energies yields 
U S 2  - s2 

2 kB TD T 2  
A,+-= A o + - = O  

/ 
/ 

/ , 
/ I , , , 

, 
I , , , 

-0.50, A-’ 

0 0.1 0.2 0.3 0.4 0.5 
r ( ( ~ ~ i l ~ ~ i k ~ i  

Figure 1. Order parameter S as a function of T (in units of ( ~ a ) ’ ’ ~ / k ~ )  for different chain 
lengths L (in units of D-’). The chain curve is the asymptotic result of WGB, given here 
in equation (29). The inset shows the transition region for very long chains in more detail. 
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where ?. = k B T / (  ae)1 /2  is the reduced temperature. The reduction by ( in contrast 
to MS after (2), shows the interplay between polymer bend and the nematic field. 

Numerical solution of (16) shows that FI = F N  when T, = 0.387 75 ( a & ) ” 2 / k B .  For 
T greater than the critical temperature T,, the part of the upper branch of solutions 
shown in figure 1 has F N  greater than F,, whence the polymers are in the isotropic 
liquid phase. When T is less than T,, then FN < F,, thus the stable nematic liquid 
crystal phase appears. The order parameter S jumps from zero to 0.35642 at the 
transition temperature T, . 

The definition of ?. was recognised as appropriate by Jahnig who first introduced 
the worm model in this context, solved it perturbatively and exploited the quantum 
mechanical map. The results for T, and S,  are the same as his though the aims here 
differ, particularly concerning the roles of finite length, chain dimension and latent 
entropy. 

X J Wang and M Warner 

2.2. Finite chains 

2.2.1. The dependence of chain properties on length L. If the chain is not long compared 
with the step length, D-I, the Green functions (8) apppearing in (10) for S are no 
longer dominated by their smallest eigenvalues, ho,  as in (12), and S becomes, on 
performing L-’j ds  

4r-3 
2r+ 1 

a n , 2 r -  4r + 
+ % 2 r - 2  ( 

O0 4ram,2r 
(4r+ 1)(4r - 1 )  

where Z, the partition function, is given below in equation (18). 
The dependence of the order parameter on the temperature T for different chain 

lengths L is depicted in figure 1 .  At a given temperature, S decreases slowly with L 
until L - 1 whereupon it decreases more rapidly. The corresponding variation of the 
transition temperature with L derives from the partition function (9) where, now, there 
are many contributors because L is not large: 

even 
Z = c 2(2n + l)a:,-fl exp(-h,L). 

f l = O  

The free energy per chain of the nematic phase is 

L even 

2(2n + l)ai ,-fl  exp(-A,L) > D  + ; a s 2 - - .  (19) 

Thus, from the equality of FN and F, ,  the equilibrium condition is 

(2n+l)a;,-, exp(-A,L) 

The results of the equation are shown in figure 2. The transition temperature is sharply 
increasing as the length is increasing and saturates rapidly as the length L is greater 
than D-’, but the order parameter S is approximately constant. 
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g 0.2 

F- 

0.1 

I I I 1 I 1 I I 1 
0 2 4 6 8 10 

Length of  cham ID- ' ]  

Figure 2. The variation of transition temperature on chain length, units being (na)"*/kB 
and D-' respectively. 

We now pause to make contact with the MS theory of low molecular weight nematics. 
As L decreases rods become effectively stiffer (more rod-like) and, as the internal 
degrees of freedom become less significant, one would expect the surviving molecular 
field to dominate and thus Maier-Saupe behaviour to result since this is the sole 
ingredient of MS. At L = 1 (in units of D-')  for an isotropic worm (no nematic field 
acting) we have for the ratio of the mean square z dimensions (WGB equation (2.6)), 
( r t ) /  L2 = 0.56 x f ,  about half of the rod value of f ,  indicating the effect of internal flex 
modes coiling and hence shortening the 'rod'. When L = g  the ratio of dimension to 
length is 0.94x+,  close to a rod. Indeed we see from figure 1 that for L-0.15 the 
dependence of S on temperature is similar to the MS theory which has SNI = 0.441 and 
TNI = 0.22 a / k B .  It must be remembered though that this theory has two parameters 
a and E when L is finite (only one, namely (as)"2 ,  when L+ CO) and is different from 
MS which only has one parameter. This reflects the two aspects, polymeric and nematic, 
to this problem. 

2.2.2. Entropy and latent heat. The entropy per chain of the nematic phase is given by 

S, = -k,(lnf)= k ,  In Z + -  ds&u2(s)- aSP, (u , ( s ) ) )  (21) T 'I 
where f is the distribution function for a configuration u ( s )  and is the integrand in 
(5 )  divided by 2. The average (. . .) is the usual Su(s)f [ u ( s ) ]  . . . . The second part 
above is the mean energy. On transition not only the nematic mean field contributes 
to the latent entropy, but also the energy recovered from unbending the chain. The 
expression for SN reduces in fact to the conventional 

(22) 

(23) 
We recall that the AoL term of In Z has an additional temperature dependence in that 
the dimensionless length L has been reduced by D-', thus explaining the additional 
term aD/ap in (23). The terms non-extensive with L are as in (14) and arise from 
the prefactors in Z. From the definition of D we find that D-'aD/ap=-i/p, 

SN = kB In 2 - k B p ( a / a p )  In Z 

s,/ kB = [-Ao+ paAo/ap + Ao/3(dD/ap)/D] L +  O( LO). 

despite the extra term in (14) for F N  and hence 
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ignoring the temperature dependence of E ,  as justified here by Jahnig (1979). To 
evaluate the derivative of A. we note that Ao=2A2/3+Ao and that aAo/dp= 
(2A2/dp)(aAo/aA2) is readily accessible from (7) by applying the Pauli trick of deriving 
(7) with respect to A2, multiplying by Spo and integrating. The result, noting that the 
normalisation of the wavefunctions is constant as A2 varies, is 

aAo/aA2 = -2( 1 - S ) / 3  

whence we obtain 

aAo/ap = (2/p)A22S/3 (24) 

and for SN 
S,/  k, = -2AoL+4SA2L/3. 

The entropy of the isotropic phase is 

SI/ kB = hl 2. (26) 

For long chains, the entropy change A S  at the transition is, from (16) which gives A. 
at the transition, 

(27) 

The latent heat at the transition A Q  is T,AS. These both scale, in this limit, with the 
reduced molecular length L; dividing through by L we accordingly obtain the latent 
entropy and latent heat per step length D-’ of the worm-like chain, the latent entropy 
being 

This result is difficult to compare with the MS results because that theory does not 
have a length scale associated with the interaction energy scale (our a is an energy 
per unit length). Our length scale in addition depends on the flexibility E, a concept 
also absent in Maier-Saupe. What is clear here is that extra entropy is involved in the 
internal degrees of freedom of a chain becoming accessible above the nematic-isotropic 
transition, when chains can adopt the full range of worm conformations. 

AS/kB = (SI - s N ) /  kB = (2A,+4Sf/ ?f)L= 2s:L/ ?f. 

As/(Lk,) = 1.69. (28) 

3. Discussion of theoretical results 

The results of this paper are in broad agreement with those of Jahnig, albeit for a 
different class of systems. The present results differ however in that they derive from 
a theory (WGB) which treats the limit of strong nematic fields exactly, a limit shown 
to be inaccessible to perturbation approaches. Asymptotically the order parameter S 
(equation (5.21) of WGB) can be shown to be, from the solution of the cubical 
self-consistency equation, 

s =$  COS2(~{27T*COS-1[~k~T/(ffE)”2]}). (29) 
The numerical analysis presented here from equations (12) or (13) for the upper branch 
of S is shown to be given accurately by (29), taking the upper sign, if T is below about 

As the phase transition is first order with a jump in S to a finite value it is not 
guaranteed that perturbation theory, which requires a small potential and hence a 
small S, can ever work. Our numerical analysis in fact shows that the description of 

0.q k , .  
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the transition from asymptotic analysis is much better and that a perturbation analysis 
to third order (WGB) is never valid. Fourth-order theory can be shown to be adequate 
around the transition, but must fail at lower temperatures where A2 become larger. 
Figures 3 and 4 illustrate how good the asymptotic analysis is. 

Results are presented here also for chains of finite length. Inspection of the figures 
showed that (a) as chain length increases one rapidly approaches asymptotia, transition 
temperatures rapidly reach a limit, transition order parameters depend weakly on L; 

Figure3. The variation of reduced order parameter S' with reduced temperature T' = T /  T,,. 
The exact numerical (A) and asymptotic (B) results are given. They are close below 
T ' - 0 . 8 5 .  The reduced order parameter allows, via (32) and (33), the calculation of the 
nematic coupling A2, in turn determining chain dimensions. 

T '  

Figure4. The difference in eigenvalues, A,,,,, and the matrix element expression, determining 
chain dimension in (34), as functions of reduced temperature T'. In each case exact 
numerical (A) and asymptotic expressions (B) are given, the latter for being highly 
accurate ( 3 6 )  right up to the transition. The eigenvalue difference or tunnelling rate from 
one orientation to another determines chain dimensions, particularly random walk to rod 
transitions ( 3 5 ) .  
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(b) the transition does not become second order as previous authors have suggested. 
Indeed the additional collective aspects to the problem, the internal degrees of freedom 
coupled to the nematic field, make the transition more strongly first order than the 
corresponding MS description of conventional nematics (see note added in proof). 

4. Comparison with experiment 

Experiment can be confronted in two ways, either (i) by estimating the parameters a 
and E or (ii) by using reduced quantities to predict further properties. 

(i)  Jahnig (1979) discusses the evidence for a and E in lipids. The lipid system 
has a potential with dipolar symmetry in addition to our quadrupolar potential. In its 
limiting form there are similarities. Taking the product which avoids the 
complications in scaling out lengths, Jahnig gives the value 1.3 kcal mol-’. Then T, is 
253 K from his result of fC = 0.388, a value in the range encountered in lipids. 

(ii) Our theory produces an order parameter, Sni, and latent entropy at the nematic 
isotropic transition which are universal to all polymers. The reduced transition tem- 
perature is also given. The transition order parameter Sni = 0.356 is of the order of 
that reported by many authors (see, for instance, Sigaud et a1 1983). Other authors 
report higher values, perhaps as a consequence of the difficulty in locating T, for 
viscous polymeric systems. As yet there appears to be little consensus of values. The 
question of the universal latent entropy is addressed below. 

Because the comparison of theory and experiment merely at the transition offers 
so little scope we suggest below a detailed scheme for comparison and prediction 
involving order parameter, entropy and chain dimension. It is sensible to reduce 
experimental quantities by Sni and T,: 

S’ = s/ s,i 
TI= T /  T , r  ?/ fc = ?/0.388. 

The all-important nematic coupling is then 

/AI2 = 3 S a ~ / ( k ~ T ) ~  = lAn,I2S’/ T” (32) 
where the value at the transition is 

/Ani/’  = 3Sni/ ff = 7.094. (33) 
Thus, given a plot of S’(T‘ )  in figure 3, IAI’ can be found as a function of T’ from 
(32). It can be seen that the asymptotic expression (29) is good below T‘-0.8. 

Aside from the order parameter, the main quantity of interest is the chain dimension 
in the ordering direction, (RS), and perpendicular, (R:). These are discussed in WGB 

and are, correcting (5.14) of WGB for (R:), 

+ L2(1 - l/lAl) for L/ D-’ >> A;,: and large IAI2 (34) 

(R:)+ LD-’/IA/’ for large /AI2. (35) 

These can be found by small-angle neutron and x-ray scattering and have, we predict, 
important variation with temperature. 
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At low temperature such that the nematic field /AI2 becomes large and  small, 
( R I )  tends to a rod and  the perpendicular extent ( R : )  becomes a random walk of a 
small extent. What was found in WGB was that the former tends to a rod in a dramatic 
way when L/ D-' - A ;,A, the dominance of hairpins, the latter shrinks in a more uniform 
manner. Thus, with a knowledge of A,,O(T')  and the matrix element, M, in (34) the 
chain extent can be calculated as a function of T' for a fixed LID-'  and compared 
with experiment, The eigenvalue and matrix element are accordingly given in figure 
4. Alternatively, a knowledge of T ' )  can be used to determine what length chains 
are required for experiment. Consideration of some numbers is illuminating: for the 
isotropic state = 2 and L/ D-' >> $ is sufficient to give a random walk. At the 
transition IA/'=7 and A,,o=0.6 whereupon the chain must be of a length such that 
LID-'>>! that we essentially still have a random walk. If we want a transition to a 
rod to occur at the low temperature T' = 0.8 we require there L/  D-' - A ;,b. We can 
estimate crudely in this example by guessing S'- 2 from figure 3 and  using (32) obtain 
1AI2-22. The asymptotic form for can be taken from WGB, equation (5.6): 

= 321AI2 exp( -2)A1)( 1 - l / l A l +  . . .) (36) 

which is shown in figure 4 and can safely be used here. It yields 0.058 whereupon 
LID-' - 17. This illustrates the prediction of WGB that the transition to the nematic 
phase does not, for reasonably long chains, mean an  immediate adoption of the rod 
state, but that for a given LID-'  this state will be found at a lower temperature. If 
the system is not already glassy at this T' we would expect a concomitant drop  in 
viscosity. In this example a choice of Ll  D-' intermediate to the limits 3 and 17 would 
hopefully reveal an interesting variation of behaviour in ( R f )  as observed by scattering. 
Figure 5 illustrates the deviation from rod dimensions by dividing the mean square z 
dimension by L2 and plotting against reduced temperature. Polymers of various reduced 
lengths LID-'  are shown. However since D-' is a function of temperature, 2&/kBT,  
this is not a good basis for comparison with experiment. Jahnig (1979) shows that for 
(CH,) entities that E is a weak function of temperature and for the present illustration 
we assume that this additional temperature variation can be ignored. It is practical to 
proceed by taking out the temperature variation of D-' by normalising to the value 
0,' and the relevant variable becomes Al,oT'. The difference is seen not to be very great. 

It remains to discuss the effective step length D-' itself. In  the absence of knowledge 
of E it can be measured via (RZ) and a scattering experiment in the isotropic phase 
for simplicity. However the theory puts a n  additional constraint on D-' at the 
transition, i.e. on D;,', via the latent entropy ( 2 8 ) ,  since putting back the D-' into L 
we have 

(28') 
and 1.69kB is the entropy per effective step length. Experiments are normalised to the 
latent entropy per monomer, As (Luckhurst (1985) quotes experiments) 

AScalc = 1.69 kB Ll  0,' 

AS = AsL/ I (37) 
where I is the length of a monomer. Equating (37) with (28 ' )  we obtain, changing to 
molar values, 

Dii' 1.69 - 
I A s / R '  

This relation scales in the correct manner: a more flexible chain, where Dii' is 
diminished with respect to 1, exhibits a larger latent entropy because the loss of freedom 
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T '  

Figure 5. Mean-square dimension of a chain along the nematic ordering direction reduced 
by the rod value, ( R : ) / L 2 ,  as a function of reduced transition temperature T'. Plots are 
given for several values of the chain length reduced by the effective step length, LID-', 
as indicated. Note that short polymers transform quickly to rods (a reduced dimension 
-1) whereas longer polymers are only a small fraction of their rod dimension until much 
lower temperatures where the nematic field causes a rapid expansion, more rapid for longer 
chains. The reduction by D-' appropriate to theory contains an additional temperature 
variation. This is taken out, as described in the text, and the dotted lines show the variation 
of dimensions of chains with temperature where chain lengths are reduced by the effective 
step length at the transition, 0;;. The curves are taken from the expression (34) for long 
chains and the result for LID-' = 1 is accordingly approximate. 

of the chain in becoming nematic is greater. Typical values of As/ R are in the region 
of 0.8-2.0 when D,i'a 1. Reported values of D,i' - 61 would seem to have to be 
accompanied by low latent entropies, in our model around 0 . 3 R .  Returning to our 
numerical example above, for the transition to a rod phase around T'-0.8 estimates 
of the degree of polymerisation would typically be in the region 1-3 to 15-45 depending 
on ( 3 8 ) .  We would like to see the comparison between thermodynamics and scattering 
afforded by ( 3 8 ) .  
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Note added in proof. Since the completion of this work, Rusakov and Shliomis (1985) have also solved the 
Jahnig model solved here, obtaining T, and S,. Although mainly interested in the relevant Landau theory 
they also notice, as we do in (b)  at the end of 5 3, that ten Bosch er a1 (1983~) wrongly obtain a second-order 
transition for very long chains. For finite chains their figure 1 is not directly comparable to our figure 2 
since the reduction in length is different. Equally the variation of transition temperature with chain length 
in Jahnig's figure 7 cannot be compared with that in our figures 1 and 2 because of constraints acting in 
his case. 
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